Теория и практика параллельных вычислений

         

Мультикомпьютеры


Мультикомпьютеры (многопроцессорные системы с распределенной памятью) уже не обеспечивают общего доступа ко всей имеющейся в системах памяти (no-remote memory access или NORMA) (см. рис. 1.6). При всей схожести подобной архитектуры с системами с распределенной общей памятью (рис. 1.5б), мультикомпьютеры имеют принципиальное отличие: каждый процессор системы может использовать только свою локальную память, в то время как для доступа к данным, располагаемым на других процессорах, необходимо явно выполнить операции передачи сообщений (message passing operations). Данный подход применяется при построении двух важных типов многопроцессорных вычислительных систем (см. рис. 1.4) - массивно-параллельных систем (massively parallel processor или MPP) и кластеров (clusters). Среди представителей первого типа систем — IBM RS/6000 SP2, Intel PARAGON, ASCI Red, транспьютерные системы Parsytec и др.; примерами кластеров являются, например, системы AC3 Velocity и NCSA NT Supercluster.


Рис. 1.6.  Архитектура многопроцессорных систем с распределенной памятью

Следует отметить чрезвычайно быстрое развитие многопроцессорных вычислительных систем кластерного типа – общая характеристика данного подхода приведена, например, в обзоре [19]. Под кластером обычно понимается (см. [60,76]) множество отдельных компьютеров, объединенных в сеть, для которых при помощи специальных аппаратно-программных средств обеспечивается возможность унифицированного управления (single system image), надежного функционирования (availability) и эффективного использования (performance). Кластеры могут быть образованы на базе уже существующих у потребителей отдельных компьютеров либо же сконструированы из типовых компьютерных элементов, что обычно не требует значительных финансовых затрат. Применение кластеров может также в некоторой степени устранить проблемы, связанные с разработкой параллельных алгоритмов и программ, поскольку повышение вычислительной мощности отдельных процессоров позволяет строить кластеры из сравнительно небольшого количества (несколько десятков) отдельных компьютеров (lowly parallel processing).
Тем самым, для параллельного выполнения в алгоритмах решения вычислительных задач достаточно выделять только крупные независимые части расчетов (coarse granularity), что, в свою очередь, снижает сложность построения параллельных методов вычислений и уменьшает потоки передаваемых данных между компьютерами кластера. Вместе с этим следует отметить, что организация взаимодействия вычислительных узлов кластера при помощи передачи сообщений обычно приводит к значительным временным задержкам, и это накладывает дополнительные ограничения на тип разрабатываемых параллельных алгоритмов и программ.

Отдельные исследователи обращают особое внимание на отличие понятия кластера от сети компьютеров (network of workstations или NOW). Для построения локальной компьютерной сети, как правило, используют более простые сети передачи данных (порядка 100 Мбит/сек). Компьютеры сети обычно более рассредоточены, и пользователи могут применять их для выполнения каких-либо дополнительных работ.

В завершение обсуждаемой темы можно отметить, что существуют и другие способы классификации вычислительных систем (достаточно полный обзор подходов представлен в [2, 45,59], см. также материалы сайта http://www.parallel.ru/computers/taxonomy/). При рассмотрении темы параллельных вычислений рекомендуется обратить внимание на способ структурной нотации для описания архитектуры ЭВМ, позволяющий с высокой степенью точности описать многие характерные особенности компьютерных систем.


Содержание раздела