Теория и практика параллельных вычислений

         

Мультипроцессоры


Для дальнейшей систематики мультипроцессоров учитывается способ построения общей памяти. Первый возможный вариант – использование единой (централизованной) общей памяти (shared memory) (см. рис. 1.5 а). Такой подход обеспечивает однородный доступ к памяти (uniform memory access или UMA) и служит основой для построения векторных параллельных процессоров (parallel vector processor или PVP) и симметричных мультипроцессоров (symmetric multiprocessor или SMP). Среди примеров первой группы - суперкомпьютер Cray T90, ко второй группе относятся IBM eServer, Sun StarFire, HP Superdome, SGI Origin и др.


Рис. 1.5.  Архитектура многопроцессорных систем с общей (разделяемой) памятью: системы с однородным (а) и неоднородным (б) доступом к памяти

Одной из основных проблем, которые возникают при организации параллельных вычислений на такого типа системах, является доступ с разных процессоров к общим данным и обеспечение, в связи с этим, однозначности (когерентности) содержимого разных кэшей (cache coherence problem). Дело в том, что при наличии общих данных копии значений одних и тех же переменных могут оказаться в кэшах разных процессоров. Если в такой ситуации (при наличии копий общих данных) один из процессоров выполнит изменение значения разделяемой переменной, то значения копий в кэшах других процессоров окажутся не соответствующими действительности и их использование приведет к некорректности вычислений. Обеспечение однозначности кэшей обычно реализуется на аппаратном уровне – для этого после изменения значения общей переменной все копии этой переменной в кэшах отмечаются как недействительные и последующий доступ к переменной потребует обязательного обращения к основной памяти. Следует отметить, что необходимость обеспечения когерентности приводит к некоторому снижению скорости вычислений и затрудняет создание систем с достаточно большим количеством процессоров.

Наличие общих данных при параллельных вычислениях приводит к необходимости синхронизации взаимодействия одновременно выполняемых потоков команд.
Так, например, если изменение общих данных требует для своего выполнения некоторой последовательности действий, то необходимо обеспечить взаимоисключение (mutual exclusion), чтобы эти изменения в любой момент времени мог выполнять только один командный поток. Задачи взаимоисключения и синхронизации относятся к числу классических проблем, и их рассмотрение при разработке параллельных программ является одним из основных вопросов параллельного программирования.

Общий доступ к данным может быть обеспечен и при физически распределенной памяти (при этом, естественно, длительность доступа уже не будет одинаковой для всех элементов памяти) (см. рис. 1.5 б). Такой подход именуется неоднородным доступом к памяти (non-uniform memory access или NUMA). Среди систем с таким типом памяти выделяют:

  • системы, в которых для представления данных используется только локальная кэш-память имеющихся процессоров (cache-only memory architecture или COMA); примерами являются KSR-1 и DDM;
  • системы, в которых обеспечивается когерентность локальных кэшей разных процессоров (cache-coherent NUMA или CC-NUMA); среди таких систем: SGI Origin 2000, Sun HPC 10000, IBM/Sequent NUMA-Q 2000;
  • системы, в которых обеспечивается общий доступ к локальной памяти разных процессоров без поддержки на аппаратном уровне когерентности кэша (non-cache coherent NUMA или NCC-NUMA); например, система Cray T3E.


Использование распределенной общей памяти (distributed shared memory или DSM) упрощает проблемы создания мультипроцессоров (известны примеры систем с несколькими тысячами процессоров), однако возникающие при этом проблемы эффективного использования распределенной памяти (время доступа к локальной и удаленной памяти может различаться на несколько порядков) приводят к существенному повышению сложности параллельного программирования.


Содержание раздела