Феномен науки. Кибернетический подход к эволюции

         

Кое-что о реальных иерархиях


До сих пор наши выводы были чисто умозрительны. Как они подтверждаются реальным строением нервной системы животных и что можно сказать о понятиях промежуточных уровней иерархии, реально складывающейся в процессе эволюции?

При сравнении нашей схемы с действительностью необходимо учитывать следующее.

Деление системы понятий на уровни не является столь безусловным, как мы молчаливо предполагали. Могут быть случаи, когда понятия k-го уровня непосредственно используются на k+2-м уровне, минуя k+1-й. На рис. 2.2 мы втиснули такую возможность в общую схему, введя классификаторы, связанные лишь с одним классификатором предыдущего уровня и повторяющие его состояния; они изображены перечеркнутыми квадратиками. В действительности, конечно, их нет, что затрудняет расчленение системы на уровни. Далее, иерархия классификаторов, изображенная на рис. 2.2, имеет четко выраженный пирамидальный характер: чем выше уровень, тем меньше классификаторов, а на верхнем уровне он всего один. Такая ситуация имеет место, когда система чрезвычайно «целенаправленна», т. е. служит для какой-то весьма узкой цели, для какого-то четко определенного способа классификации ситуаций. В примере, который мы приводили, это было распознавание «домиков». И мы видели, что уже неправильные трех- или четырехугольники для такой системы оказываются «бессмысленными»; они не вписываются в иерархию понятий. Чтобы быть более универсальной, система должна быть подобной не одной пирамиде, а многим пирамидам, вершины которых расположены приблизительно на одном уровне и образуют множество понятий (а точнее, множество систем понятий), в терминах которых происходит управление действиями животного и которые обычно обнаруживаются при исследовании его поведения. Об этих понятиях говорят, что они составляют основу определенного «образа» внешнего мира, который складывается в представлении животного (или человека). Состояние классификаторов этого уровня является непосредственной информацией для исполнительной части нервной сети (т.
е. в конечном счете для эффекторов). Каждый из этих классификаторов опирается на определенную иерархию классификаторов — пирамиду, по которой движется информация так, как это было описано выше. Однако пирамиды могут перекрываться в своих средних частях (и заведомо перекрываются в своей нижней части — рецепторах). Общее число вершин пирамиды может быть теоретически как угодно велико, в частности, оно может быть много больше общего числа рецепторов. Это тот случай, когда одна и та же информация, доставляемая рецепторами, представляется множеством пирамид в множестве различных форм, рассчитанных на все случаи жизни.

Отметим еще одно обстоятельство, которое следует учитывать при поисках иерархии в реальной нервной сети. Если мы видим нейрон, соединенный синапсами с сотней рецепторов, то это еще не значит, что он фиксирует какое-то простое понятие первого уровня типа суммарного числа возбуждений рецепторов. Логическая функция, связывающая состояние нейрона с состоянием рецепторов, может быть весьма сложной и имеющей собственную иерархическую структуру.


Содержание раздела