Математический анализ в Maple

         

Однако радоваться несколько преждевременно. Многие



Шаг 4

Однако радоваться несколько преждевременно. Многие ли математики знают, что это за специальная функция — WhittakerM? Студенты, любящие подшучивать над своим профессором, могут попробовать спросить у него об этом. Скорее всего, профессор стушуется, а потом будет долго копаться в литературе, прежде чем найдет ее определение и сможет разъяснить, что это такое. Но хуже другое — Maple 7 при конкретном n = 20 дает грубо неверное решение — 0 (почему — уже объяснялось). Забавно, что при этом сама по себе функция WhittakerM вычисляется для n = 20 без проблем: 
> WhittakerM(10,10.5.1);
6353509348
А теперь присмотритесь к новому результату вычисления злополучного интеграла. Оказывается, он уже не содержит больших чисел, свойственных прямому решению! Зная значение WhittakerM с погрешностью по умолчанию, можно уверенно вычислить приближенное численное значение интеграла с тойже погрешностью, уже не прибегая к арифметике высокой точности: 
> (exp(-.5)*WihittakerM(10,10.5.1))/21;
01835046770
Итак, мы вычислили нужный интеграл несколькими разными способами. В этом и проявляется могущество современной математики, достойно представленной такими системами, как Maple 7. Заинтересованный читатель может попытаться найти еще ряд методов решения данного интеграла и преуспеть в этом! Мы же как торжество Maple 7 приведем график зависимости значений данного интеграла от показателя степени n при его изменении от 0 до 50 (Рисунок 8.1). Надо ли говорить о том, что полученный результат имеет куда более важное значение, чем вычисление нашего злополучного интеграла при конкретном n = 20? А плавный ход графика показывает, что в вычислении данного интеграла нет никаких признаков неустойчивости решения при изменении n, если соблюдать правило выбора погрешности вычислений.
Наличие у функции особых (сингулярных) точек нередко затрудняет выполнение с ней ряда операций, таких как численное интегрирование. В этом случае могут помочь соответствующие параметры. Например, вычисление следующего интеграла дает явно неудобное выражение в виде набора значений, разных для разных интервалов измененияа:

Содержание  Назад  Вперед







Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий